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Abstract

INTEGER PROGRAMMING WITH GROEBNER BASIS

By Isabella Brooke Ginn,
Bachelor of Arts, Mary Baldwin College, 1999

A thesis submitted in partial fulfillment of the requirements for the degree of Master of
Science at Virginia Commonwealth University

Virginia Commonwealth University, 2007

Major Director: Dr. James Deveney, Professor
Department of Mathematics

Integer Programming problems are difficult problems to solve. The goal is to find an
optimal solution that minimizes cost. With the help of Groebner based algorithms the
optimal solution can be found if it exists. The application of this Groebner based
algorithm and how it works is the topic of this research. The Algorithms are The Conti-
Traverso Algorithm and the Original Conti-Traverso Algorithm. Examples are given as
well as proofs that correspond to the algorithms. The latter algorithm is more efficient as
well as more user friendly. The algorithms are not necessarily the best way to solve an

integer programming problem, but they do find the optimal solution if it exists.
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Introduction

Let A be an m x n matrix with integral entries, b € Z" andc € Z"
(web.mit.edu.,2004). Given Ax = b, there is a cost vector that allows us to determine an
optimal solution for Ax=b. The optimal solution(s) is a solution that minimizes the cost,
based on our cost vector, c. An integer programming problem is similar to a linear
programming problem except the solutions are positive integers. Based on applications
we are only interested in whole units to minimize our cost. For example we would not be
interested in making half of a bike to minimize our cost. Integer programming problems
are very hard and are known as NP-complete problems, because we do not know how to
solve them in polynomial time. The idea is to use Groebner Basis in order to find a
solution that minimizes our cost.

The first section contains an introduction to Integer Programming. The second
section discusses the idea behind finding a Groebner Basis. In the third section the Conti
and Traverso Algorithm is introduced as well as examples that meet the requirements of
the algorithm. The original Conti and Traverso Algorithm is discussed in the fourth
section as well as examples. The following section concludes why finding the Groebner
basis works to find the optimal solution to the Integer Programming problem and the last

section concludes the paper.



Integer Programming

In 1827, the French mathematician J. B. J. Fourier published a method for solving
systems of linear inequalities. (Sierksma, 1) This reference is known to be the first study
of solving linear programming problems. Linear programming problems are used to
solve various types of problems.

Given a linear programming problem, we want to solve for our given variables. If
we are given a system of equations in n variables where Ax=b, we find our solution(s) to
this system. If w is one of our solutions then Aw=b.

We want to find solutions to Ax=0, where the solutions are going to be a subspace

of R". Once the solution is found, say r, then w+r is a solution to Ax=b. However we
are only interested in the solutions that are positive integers. Since integer programming
involves solutions that are only integers the calculations tend to be more difficult. Linear
programming problems can be done in various ways that can be solved in polynomial
time, where integer solutions are a little harder and take longer to find. If we solve a
linear programming problem and the solution is of integral value and it is optimal then
we are done. If that is not the case then there is a more difficult problem that needs to be
solved. Since we are looking at integer programming problems we are only interested in
finding the solution(s) to Ax = b where the solutions are positive integers and A is an m x
n matrix. Given Ax = b, and there exist more than one solution to this problem, we want
to figure out which of the solutions minimizes our cost. Let ¢ be our cost vector with n

elements. The cost vector is used to figure out which solution is the optimal solution, the
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one that minimizes our cost. While a system of equations can have an infinite number of
solutions in a contained area there are only a finite number of integer solutions. Since
there are only a finite number of integer solutions then we do not have as many to work
with to find the optimal one.

The region where all of the solutions are contained is known as the feasible
region. The feasible region is a convex polytope that contains the solutions to our matrix
equation. Only a finite number of the solutions are integer solutions, and those are the
ones that we are interested in. This feasible region will lie in the quadrant where all
values are positive. Within this region we are looking for the solution that minimizes our

cost. The feasible region is a confined set of points and is defined as,
P/ = convex hull{x € N" : Ax = b} (Thomas,122). The convex hull is enclosed by a

polytope, and the integer solutions lie within that polytope. The area is feasible as long
as it is not empty and is bounded. Within the bounded region the solution will not have
an infinitely large solution, however if the area was not bounded then it would. The
feasible region contains all points that satisfy all of the constraints. There may be several
integer solutions that minimize the cost and therefore any of them would be optimal. The
solutions to our integer programming problem are the points that are contained within a
polytope that is formed by the intersection of the constraints. The optimal solution is one
or more of the vertices of this polytope. The cost vector determines which of the vertices
is optimal. From the cost vector a hyperplane can be formed and is shifted throughout

the polytope. The hyperplane intersects the vertex and that point is the optimal solution.
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To find this solution we will find the Groebner basis of the toric ideal of our

matrix system.

optimal selution

polytope

initial solution

This is a polytope that represents the route in which the cost vector would go in
order to minimize the cost. The initial solution has an integral value but the next solution
cost less than the previous solution. The next vertex is then tested to see if it cost less and
it does, so this process is continued until we get to the optimal solution that costs the
least. The following picture represents the cost vector cutting through a plane

Cutting Plane

Cost Yector



(The previous pictures were recreated based on work done by Thomas, pages 120 & 121)

The cost vector intersects the cutting plane and therefore gives the optimal solution.
Groebner Basis

In this section we will discuss what a Groebner basis is and the different
terminology associated with a Groebner basis.

Monomial Ordering.

A monomial ordering is done on polynomials where the monomials are put in
order from largest to smallest. Given a polynomial in one variable, the ordering would be
done where the monomial with the highest degree would be first and the next highest,
would be next and so on.

There are two properties that must be considered in order to define a monomial
order.

1. Well — Ordering. Any nonempty subset of monomials has a least element

under >.

2. Compatibility. If x* > x”, then x*x” > x’x” for any monomial x”.

The monomial ordering that we will use is lexicographic and it is defined
as,x -+-x% > x---x" < a, >b,,or a, =b, and a, >b,, etc. (Cox, 3)

For example, given the following polynomial, with ordering x>y>z,

X’y 2 +x*y’ 2 + ¥’y 2 + X’ yz+ x*yz? + x°y?z , with the monomials in order the

polynomial would be x°y*z+x’yz +x*yz* + x*y*2* + x2y°z* + x2)° 2.



Leading Terms of a polynomial.

Given a polynomial of the form Za,.x‘ , where a,x" is the leading term. Our a, is
i=0

non-zero and n is greater than or equal to zero. If two terms of a polynomial have the
same variable with the same degree then the degree of the next variable in the order is
used to determine the higher degree term. This process continues until there is a
monomial that has the highest degree. The leading term is also known as the initial term.
For example, givenx’y*z’ and x*y*z*, with lexicographic ordering x>y>z then
the first monomial would be the leading term. By changing the lexicographic ordering to
z>y>X, the second monomial would be the leading term. The total degree of the first

monomial is 10 while the total degree of the second is nine. This is important if we are

looking at monomial such as x’y and y'°, with the lexicographic ordering as x>y, then the
first monomial would be the leading term of x’y + '’ even though y'’has a higher total

degree than x’y .

Division Algorithm for Polynomials.
Given fand g that are polynomials, then f can be written as such:

f=qg+r,

where no term of 7 is divisible by LT(g). (Cox, 4)



Ideals.

A collection of polynomials f,,..., f, € k[x,,...,x,] generates the ideal
{fisees 1) = {Z:=l hf |h €kl[x,,....x,]}. (Cox, 5)
Hilbert Basis Theorem.

If I ck[x,,...,x,] is an ideal, then we can find f,,..., f, € k[x,,...,x,] such that

P .

A Groebner basis for an ideal I in the polynomial ring F[x,, x,,....,x, ] is a finite set
of generators {g, g,,.....g,,} for I whose leading terms generate the ideal of all leading
terms in I, i.e.,

I=(g,,.......g,) and (LT(/)) = (LT(g,),...,LT(g,,)) . (Dummit, 319)

In other words, a set of generators {g, g,,.....g,,} of I is a Groebner basis if the

leading term of every nonzero element of I is divisible by some LT(g,). Any Groebner

basis of I is a basis of I. [Cox] Every element in / is a polynomial combination of
generators. The process of finding the Groebner basis can take a while; the length
depends on the number of variables.

Polynomial division must be done in order to apply what is known as the S-
polynomial for the first step of finding the Groebner basis. An example of polynomial

division is as follows:



We want to divide x> + 1 into x° - 2x* + 3x + 7:

x*+ l)x5 —2x"* +3x+7, written with each degree term with zeros as coefficients

would give us the following:

x* + l)x5 —2x" +0x’ +0x” +3x + 7 and performing the operation gives us

X =2x*—x+2
x2 +1)x5 —2x* +0x° +0x2 +3x+7

—(x° +0x* +x*)
-2x* - x’
—(-2x* +0x* —2x?)
saxt” o 206

—(—x’ +0x* —x)
2x" 4%
—(2x* +2)

4x+5

To put it in the form of f=gg+r, we have:
-2 +3x+ 7=+ 1)(x* =2x* —x+2)+ 4x+5, where =4x+5, and no

term of r is divisible by x* + 1.
The S-polynomial is used to get rid of the leading terms of the polynomials that

M M

we are using. The S — polynomial is defined asS(f,, f,) = T fi— 7
1 2

/, , where

Ji» fy € k[x,,...,x,] and M is the least common multiple of the leading monomial of f;
and f,. The S-polynomial combines f, and f, to cancel out the leading terms for each

polynomial. We then have polynomials that are easier to solve.



Example of applying the S-Polynomial:

Let f, =x’-2xy and f, = x"y—2y" — x, with lexicographical ordering as x>y. Given

3 3
P={fifo)sthen S(A f)= " fi= 0 fo= v fy = =3

Now to compute the Groebner basis for the above ( £, f, ), we want to use

Buchberger’s Algorithm to do so. In order to do so we must perform general polynomial
division. General polynomial division is used once the S-polynomial of two polynomials
is found. Once the S-polynomial is calculated and the remainder is not zero, we use
general polynomial division in order to find the Groebner basis.

General polynomial division is used once the S-polynomial is found. The result is
then divided by each polynomial in the set. The remainder is then put in the set and the
process is continued until each division gives a remainder of zero.

General Polynomial Division
Given a polynomial P, it can be expressed as a factored form using the set of polynomials

that generate the ideal.
P= Z pif;
i=0

Where f; represents the polynomials in 7, and p, represents the polynomial factors of £,

that when combined together form the polynomial P.

Example of General Polynomial Division
Given g =xy’ —x, we want to divide g by g, = xy+1 and g, =y —1, dividing by g,

first and then by g, .
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xp’ —x=y-(xy+1)+0-(y2 -—1)—x—-y , where —x — y is the remainder.
Dividing g in the other order g, = y* 1 and then g, = xy +1, then the remainder is zero.
xp’ —x=x-(y2 —1)+0-(xy+1)
When dividing by g,and g, , look to see if the lead monomial of g is divisible by the lead

monomial of g, org,. Ifitis not then add it to the remainder if it is then add what you

get to the quotient.

When performing general polynomial division it is important to factor the polynomial as
much as possible, therefore that latter factorization is the ideal general polynomial
division because we get a remainder of zero.

Buchberger’s Algorithm

Given{f,,..., f,} C k[x,,...,x,], consider the algorithm which starts with F={f,,..., .} and

then repeat the two steps

1. Compute S(f,f,) forall f,f, €Fwithi<j.

(S(f,, f; )F is defined as the remainder of the S-polynomial with division by F)

2. Augment F by adding the nonzeroS(g,, g, )F .

(For each time F has a polynomial added that is nonzero), until the Compute Step
gives only zero remainders. This algorithm always terminates and the final value of

Fis a Groebner basis of (f,,..., f.). (Cox, 8)
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Bruno Buchberger developed the idea of a Groebner basis in 1965 and named it
after his advisor Wolfgang Groebner. (Becker, vi)

The S-Polynomial is found for each different pair of polynomials in F. Do
generalized polynomial division and then if the S-polynomial of the two polynomials is
not equal to zero then the remainder is put in F as another polynomial. This process is
continued until finding the S-Polynomial of each pair of polynomials gives you all

remainders of zero.

Example of finding a Groebner basis for an ideal
To find the Groebner basis for ( f;, f,) where £, = x* —2xy,
f, =x’y -2y’ —xand f, = x*because we know S(f,, f,)=x>. Now we
have, F| = {1, f,, f;} , and we have to compute S-polynomials of possible pairs for the

three polynomials in /], and see if we get a remainder of zero when doing generalized

polynomial division.

S f)' =0

ST

S, 1) =-2xy=/,

K
S f) ' ==x-2y" =,
This does not give us a Groebner basis so we have to continue with f, and f;. We are

now going to look at F, ={/,, 15, f5, f1, f5} -

S f;)" =4y’
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S fs)  ==25°

S(f,,fj.)F2 =0, for every other i<j.

e — i
Now f; =3, F, ={1i, 5, fis Jos S Sy and S(f,, f})° =0for 1<i, j<6.
The Groebner basis for the ideal generated by £, and f, with lexicographic ordering of
X>y is

F ={x3 —2xy,x2y—x—2y2,x2,—2xy,—x—2y2,y3}-

Example to check if { /|, /, } is a Groebner basis for 1.

Given the ideal I generated by the following polynomials:

fi=xy-xy’ +1

L=xy =y -1,
We want to find out if F={ /|, f,}is a Groebner basis. S(f|, f,) = yf, —xf, =x+y, this is
it’s own remainder when divided by {f,, f,}, so F is not a Groebner basis for I. In order
for it to be a Groebner basis it would have to have a remainder of zero. So set f, =x+ y.
Let F, ={f.,f,»f;} Now S(/,,/,) =0modF,,and

T e U
S(fi. /o) ' = f,—-x*yfi=—x"y* —xy* +1 =0mod F, and

< —F
S fy) =f-0'f,=-x' -y -1=y" -y’ ~1mod F,.
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ST

Now let f, =y* -3’ -1 and we get F, ={f,, f,, /s, f;}and S(f,,f,)  =0mod F}, as
well as every other pair of polynomials in F,. So we have that F, is a Groebner basis for
I and the LT(I) is generated by the leading terms of the four polynomials in F, and
LT(I)= (x’y,x*y*,x,y*)=(x,»"). So x+y and y* -’ —1 contain the leading terms in
I and therefore {x+y,y* — »° =1} gives a minimal Groebner basis for I, where

I=(xtyy' -y’ -1 o

With the help of technology, such as Maple, problems as the above can have the
Groebner basis computed much faster than doing it by hand and problems with much
larger degree can be done in a relatively timely fashion. The following is the above
example executed in Maple.

f[1] :=x*3*y-x*y*2+1;

ﬁ::x3y-xy2+l
£fl2] :=x*2*y*2-y*3-1;
- 2
5H ::xzy —y3 -1

bl:=gbasis ([£[1],£[2]],plex(x,y))
bl = [-y3 -1 +y4,y # ]

b2:=gbasis ([£[1],£[2]],plex(y,x));

b2 =[-1 +x4 +x3,y+ X}

In b2, the Groebner basis with lexicographic ordering y>x is found. It is important to

note that the basis depends on the monomial ordering.
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First Conti-Traverso Algorithm and Example

A Groebner based algorithm was found by P. Conti and C. Traverso that solves an
integer program, Ax=b, but only if all elements of b are positive. To do this we must find

the toric ideal. The toric ideal of A is the kernel of the following homomorphism,
k[x-x,--x,] > k[tf‘ - ---tj']. Where x, — ¢ and a; is the jth column of A.
(Thomas, 122)

Fact: The toric ideal I, = (x" —x" i e ker (A)i=1ua1).

The toric ideal is not easy to find because we have to know the solutions to Ax=0, but to

give an idea of what the toric ideal of a matrix looks like we will look at the following

11 -1
A:
P

This is the toric ideal for the matrix A,

matrix A.

' =<—x2 +x;xf>.
Since the toric ideal is very hard to find it was found by work that we will look at in the
next section on the Conti-Traverso Algorithm. This is just to give an idea of what the
toric ideal of any matrix may look like.
The first step of the algorithm is to find the Groebner basis of the toric ideal, the
lexicographic ordering is based on the value of the elements in the cost vector. To get a

Groebner basis you need a monomial ordering. Our cost vector gives us the ordering that
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one needs. For example, given ¢ = (2, 1, 4, 3, 1), the monomial ordering would
bex; > x, > x, > x, > x;. We assume that all of the elements in the cost vector are

positive, because it is impossible for something to cost negative dollars in order to be

produced.

The following corollaries are important in the process of this algorithm.
Corollary 1:

The reduced Groebner basis G_. of the ideal that represents the toric ideal associated

with the matrix A consists of a finite set of binomials of the formx" —x" , where

ue ker,(A) and > c is the ordering based on the cost vector. (Thomas, 123)

A reduced Groebner basis is when no monomial of any element of a Groebner Basis is
divisible by the lead monomial of any other polynomial in the Groebner basis. The
reduced Groebner basis is unique.

Corollary 2:

The normal form of a monomial in k[x] with respect to the reduced Groebner basis G,
of 1, is again a monomial.

The normal form of a polynomial f'with respect to the lexicographic ordering is the

unique remainder of dividing f'with respect to G, __. (Thomas, 123)

The Conti-Traverso Algorithm for /P, .

1. Compute the reduced Groebner basis G_.of 1,
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2. For be pos,(A)and any solution u of IP,(b), compute x‘ = nf, .(x"). The

vector u is an optimal solution of IP, .(b), (where nf.__(f) is the normal form of

the polynomial f). (Thomas,123)

Idea of the proof.

Given Ax=b, we are given the Groebner basis for the toric ideal of Matrix A.
Let G<C = -xli=1,.., p}, where x“ is the leading term. The polynomial

2% e 3% o

n

--x" gives us the solution a,---a, —b, ---b, to Ax=0. This gives us

~ — - - — - = - - - — -

a, b, w, w, a, b,
A|. |=4|. |. Giventhat 4|. |=b,then 4||. [+|. |-|. ||=bandtheb,’s can
_a’l_ _bn_ _wn_ _Wn_ _an_ _bn_

be traded for the @, s, because the g, ’s cost less than the b, ’s, or vice versa. This is based

on the cost vector. The cost vector allows us to determine the value of each variable. In

this case since the g, ’s cost less than the b, ’s, we would want to have more of thea,’s o

Example:

. 1 21 3 1
Given Ax=b, where A= .

250
b= and the cost vector ¢ = (5, 4, 3,2, 1).
2 1 01

100
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]
20
Given the solution| 30 |, we want to use this solution to find the optimal solution.

40
50

The first step is to compute the reduced Groebner basis of the toric ideal and

get G, =[—x, +X;,—X; + X ,—X, X +X,X,, X2X, — XoX,,—Xs + % x,]. We find the normal form
with respect to G, isx; " x;" , therefore (0, 0, 0, 50, 100) is the optimal solution.

For the first binomial in the Groebner basis to reduce cost all of the x; ’s, that have value
three, can be replaced with x; ’s that have a value of one. For the second binomial

three x, ’s can take the place of two x,’s and have a value of six instead of eight. The
third binomial two x;’s and one x, can be replaced with one x, and one x,. For the fourth
binomial, two x;’s and one x, can be switched with two x,’s and one x,. For the final

binomial four x; ’s can be traded with two x, ’s and one x, in order to minimize cost.

This method is only good when our b is positive and we are given a solution to
the system to work with. However there is an algorithm to find the optimal solution with
out knowing a solution and our b can have negative values, it is known as the original

Conti - Traverso Algorithm.
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Original Conti-Traverso Algorithm

Since the previous algorithm does not allow b to have negative elements and we must
know at least one solution, it is not always practical. We are interested in finding the
optimal solution for an integer program, if b has positive or negative integer values and
not having any solution to our system. The following algorithm gives us the steps in
order to do so. This algorithm is also helpful because it gives a method for finding the
toric ideal of the matrix A.

Conti-Traverso Algorithm:
Consider the ideal J = <x jt"’_' —19, J =Lt L, —1> in the polynomial ring
K X scon s, sbyplisnessty J» Lt b = yonsl }
1. Compute the reduced Groebner basis G_. of Jwith respect to any elimination
term order ="' such that {t,t,,...t,}>"{x,....x, } and >' restricted to k[x]
induces the same total order as ..

2. Inorder to solve IP, . (b), form the monomial 1" =1J1;"*“**“) \where
=max{b.|:b. <0} and e is the i-th unit vector R®. Compute the normal
b § i 1 p

orm t7x" of the monomial t* with res ectto G ..
4 5

If y =0 then IP, _ (b)is feasible with optimal solution u. Else IP,  (b) is infeasible.

(Thomas,124)
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The ideal J = <xjt”; % sl == Lsses Halol wonly —1> has the property that J N k[x]=1,,

which in turn implies that G . (\k[x]=G, . (Thomas,124)
What this is telling us is that when we take our ideal J and intersect it with k[x], we get

the toric ideal which is made up of just our x’s.
Since J =<xjta’_' i o] =l ntt ot —-1> , We can say that in J we have

1
aj ., ) . -1
Xy =—=X~1", where j represents the columns in A. If we are given as one of
t J
-3

2
” : 5 ot Lt o
the columns in matrix A, then we get <x BTy —t]t32>= X, - =x -ttt =
2°4

u

x, =4, =x,—1" . Therefore when reducing x" —x" , we can replace x, withr” .

This is used to show that x* —x* is in the ideal J.

The following proof has been directly taken from the work of Rekha R. Thomas.
Given k[x,-x,---x,][t, -1, ---ta,]—>k[t,il -t ---tj,“] andt, > 1, t, >1t,,...,

t, >t 1]

Therefore, Step 1 of the algorithm indirectly achieves step 1 of the previous algorithm
and the exponent vectors of all monomials of the form x" encountered during the

reduction of t* with respect to G . lie in P, . Since - is elimination order, the
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algorithm with reduce t° to a monomial of the form x" as long as IP,, (b)is feasible
and then will proceed to reduce this solution to the optimal solution of the program.
Suppose now that the normal form t” x* of t" has y #0 and IP,, (b) has a solution of v.
Then since > was an elimination order with {1,,1,,....t,}>"{ x,,...,x, }, the binomial
t'x" -x" eJ has t'x" as leading term. This contradicts that t” x" is the normal form of
t” with respect to G .. Therefore, ify =0, by the same argument as in the proof of the

previous algorithm, u' is the optimal solution to IP,, (b). o (Thomas, 124)

In order for the algorithm to be effective then the feasible region must be bounded.

Example 1
1 2 -3 4 15

Given Ax=b, with A= |2 -2 4 3|andb=|11|, we want to find the optimal solution
1 3 4 2 11

where ¢=(3, 2, 1). The first thing to do is compute the reduced Groebner basis of the
J e 2 2 2.3 3.4 4 4.3.2 . . .
ideal J=[x, —t,t;t;, x,t; — 1,15, x,1,t; =1, ,x, — 1, ;1] with monomial ordering x, > x, > x;.

Once that is done we get G=[-x)’x} x} +x,°,...,—x, +£;1,t,x,] (see Maple work below).

We then find the normal form of #°,'s;' with respect to G and get x, x;x.x, , therefore the

optimal solution is (1, 4, 2, 3).

Given —x;’x; x; +x, is in the toric ideal. When we replace x, with/” , we get

G RGN B G e A R UM (YA (AR
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Maple work for Example 1:

> J:=[x1-t1*t272*t3,x2+%t242-t142*%t343,x3*£t143%t344-t2/4, x4~
t144*t243*%t342];

J=[xl-t1 122 13,x202% - 112133, 23113 134 - 2%, x4 -11* 12° 132

> Ml:=gbasis(J,plex(tl,t2,t3,x1,x2,x3,x4));

M1 =[-x2P 231 x4% + 215, 5210537 x4 13- 517, 2252310242 + 21813, w25 233 x4+ 132 21 x4,
t32x12-x1x25x33;x16+x25x34x42133¢w15+I35x3x4{t37x42-x25x32x14,
122x2%x3% x4-x1*, %2802 x1 x33 - 137 x4, %4133 + x202x12, -13x2* x33 x4+ 12 %13,

132 02x2x3x4-x13, %2 x1? x3% + 13* 0234, x2 x3x412% - 13x1 x4, -3x1 2 + x22 2% x3 21,
t22»48-x23x32x4,Qzl3x1-x23x32x1,Q3x12-t32x22x32x4,Q4-x2x3xL
xlxd+x23x3%xatl, %1%+ x23 %3 x1 11,01 x2% x1% x3- 12132 x4, -2 x23 x32 x4 + 1 213,
11x2x3x413-12% x4, x1 122 + t1 13x2x3x1, -x2% x3 x4+ 132 x4 11, 11 132 x1 - x22 x3 x1,

x2x3x4 13+ 11 2x1%, 1+ 1 2% 13,01 123 x2x1 - 132 x4, 2 x4+ 112 x12, %2122 + 112433,

x4 3+ 112 12x2% x3x1, 012 123 x1 - x2x3 x4, x4+ 113 12 13 x1]

> bi=Matrix([[15] ,[11],[11]1]);
15

bl oy

11

> normalf (t1415*t2411+*t3411,Ml,plex(tl, t2,t3,x1,x2,x3,x4));
x43x24x3% x1

The result of the normal form tells us that because there are three x, , fourx, , two x, and

one x, , the optimal solution is (1, 4, 2, 3).
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Examples of the Original Conti-Traverso Algorithm

Example 2

-] 2

1
Given Ax=b, with A=
3 21

-4
] and b= |:1 6 } , we want to find the optimal solution.

Based on the algorithm the first thing to do is to compute the reduced Groebner basis of
the ideal J=[x, —1,6;, x,t, —1;, x;t, —1; 1,11, —1] with monomial ordering x, > x, > x,.
When that is done we get [x; —x,x;,..., X/, —,] (See attached Maple Work). We then

form the monomialc,11;°, since there was a negative element in b, four was added so
that it would no longer be negative, because the normal form can not be found with

rational expressions. We now compute the normal form of #,#'£2° with respect to the

Groebner basis. When this is done we get x,x,x,. So the optimal solution to our
problem is (1,7,1).
Maple work for Example 2:

> M:i=[x1-t1l*t243,x2%t1-£242,x3*%t2-t1°2,t0*t1l*t2-1];
M:=[xl- 11623 x2¢1-12%,x312-11%, 1011 12- 1]

> MM:=gbasis (M,plex(t0,tl,t2,x1,x2,x3));
MM =[x1?-x27x35 524 x33 02- %1%, x1 £2-x23 x32, %1 +x2122 x3, 123 - x2% %3, x2 11 - 122,

x2%x32 12+ xI 11,1 12-x2x3, x3 12+ t1%, -1 + 10x3x2, x1 10 - 122, 10x3 122 - 41]

> normalf (t0%4*t2420,MM,plex(t0,tl,t2,x1,x2,x3));
x2" xIx3
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Why the Groebner Basis Finds the Optimal Solution

If v is any solution to Ax=b, thent’ —x" € J , the binomial must be in the toric
ideal. If that is the case then " must reduce to a polynomial in terms of x’s since v is a

solution. The reason this is so is, if we are given that m, —m, is in the kernel and given h
and g, if m, divides h, then h= m, w and g= m, w, so h-g is in the kernel. From this we
can say that m, can be replaced with m, when reducing h.

Given 1* =J1;*74*-**") and the feasible solution exists, say v, so Av=b, we want

to show that?’ —v e J , so that when we reduce ¢ , we can reduce it to v. Whatever the

reduction is, it is going to be less than or equal to the solution v. Therefore that is why

the normal form of ¢’ is a polynomial in terms of x.

Given
a a9
% %
Al - |=[¢, ¢ - - ¢;]| - |, where A can be represented as d columns of n by one
[ 9 | G ]

matrices.



Wethenhave, [¢, ¢, - - ¢/]| - |=ac+ac,+..+ac,.

We know from previous work that,
a
X, >t
Xt —
a a a1 4G5 C
xllle _>tllt 22,
And tla,qtzazcZ == toalcl+azcz , therefore x]al xgz . 'x:d = tlalc|tzazc2 e .tdadc,, - toa|C|+azcz+..4+a,,cd )

If v is a solution to Ax=b, so Av=b. So, v=x"x?---x), and based on our

homomorphism this becomes #,“*¢,""> ...t “*

=t QW AWy +. AW,
0

If the homomorphism is applied to 1*=17'1>*/“"*“  we get

=_____1____ b+p(e+..+e;)
BB B0
t] [2 ...td

- _1__ b p(e+.+e;)
BB . 4B0°0
tl [2 ...td
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b.B.B B
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I{Btf-'-tf 07172 d

—4b

Sot’—veld.

Therefore, v is any feasible reduced solution that is found from taking the normal form.
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Conclusion

Integer Programming problems can have several solutions. When solving these
types of problems only certain solutions work for the problem at hand. One thing that
one may look for is to maximize profit. Something else that may be important when
solving these types of problems is to minimize the cost. An integer programming
problem may have several solutions but when the problem is to minimize the cost we are
only looking for the solutions that can do that. This solution is known as the optimal
solution.

Since integer programming problems can take a very long time to solve by hand
we have found ways to solve this type of problem by using a method that involves
finding the Groebner basis. This too can be very lengthy, but with the help of technology
can be done in a timely fashion.

There were two methods that were looked at to deal with solving integer
programming problems. The first Conti-Traverso Algorithm was good for solving these
types of problems as long as our b had all positive values. This is not always the case so
there was the second Conti-Traverso algorithm that found the optimal solution where b
could have any type of integer value. Both of these methods involved finding the toric
ideal of our Matrix A, and then computing the Groebner basis of this ideal. The cost
vector gave us the order of our variables. The variables that cost the least were ordered

first, since we were looking to minimize cost. Since the second method allowed for there
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to be negative values in b, there were a few more steps in order to find our optimal
solution. Once the Groebner basis was found we had to find the normal form of our b
vector with respect to the Groebner basis. Once this was done, we had the optimal
solution. With the use of technology and computing the Groebner basis, finding the

optimal solution for an integer programming problem has been made easier.
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